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Importance of Aerosols I

• Directly impact Earth’s radiation budget by scattering
and absorbing solar radiation and by interacting with
clouds

• Offset some of the radiative forcing from greenhouse
gases

• Contribute largest uncertainty to total radiative forcing
estimate

• Adversely affect human health
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Importance of Aerosols II

• Aerosol vertical distribution crucial in determining area
impacted by them
– aerosols transported to the free troposphere or stratosphere will be

horizontally transported over a large distance, impacting large regions
– aerosols confined to the boundary layer are removed quickly by rain.

• Aerosols and their vertical distribution also impact
remote sensing observations by varying photon path
length
– observations of atmospheric trace gases or surface parameters such

as ocean color need to be corrected for aerosol effects
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Decadal Survey Designated Observable

• QUESTION C-2. How can we reduce the uncertainty in the amount of future warming of the Earth as a function of fossil fuel
emissions, improve our ability to predict local and regional climate response to natural and anthropogenic forcings, and reduce the
uncertainty in global climate sensitivity that drives uncertainty in future economic impacts and mitigation/adaptation strategies?

• QUESTION C-5. A. How do changes in aerosols (including their interactions with clouds which constitute the largest uncertainty in
total climate forcing) affect Earth’s radiation budget and offset the warming due to greenhouse gases? B. How can we better
quantify the magnitude and variability of the emissions of natural aerosols, and the anthropogenic aerosol signal that modifies the
natural one, so that we can better understand the response of climate to its various forcings?

• QUESTION W-6. What processes determine the long-term variations and trends in air pollution and their subsequent long-term
recurring and cumulative impacts on human health, agriculture, and ecosystems?

• QUESTION C-3. How large are the variations in the global carbon cycle and what are the associated climate and ecosystem
impacts in the context of past and projected anthropogenic carbon emissions?
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Oxygen Absorption and Aerosol Vertical Profile
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O2 absorption

Column AOD

Oxygen Absorption and Aerosol Vertical Profile
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O2 absorption

Column AOD

Oxygen Absorption and Aerosol Vertical Profile
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O2 absorption

Column AOD

Oxygen Absorption and Aerosol Vertical Profile
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CLARS: California Laboratory for Atmospheric 
Remote Sensing

CLARS-FTS

LA Basin
Source: megacities.jpl.nasa.gov

Reflected sunlight from 33 surface sites
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Sensitivity to Aerosol Vertical Structure
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Spectral Sorting
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Look-up Table for Aerosol Layer Height
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Aerosol Vertical Structure
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Validation
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Application to Satellite Measurements

• Spectral sorting method can be applied to hyperspectral O2 A-band
measurements from satellites, such as the OCO-2 and the OCO-3
missions

• Accuracy of ALH retrieval shows a certain dependence on SSA and phase
function (can be simultaneously retrieved by combining hyperspectral
oxygen absorption and polarimetric measurements)

• ALH likely to be underestimated for relatively clean days. However, for
very low aerosol loadings, the bias in GHG retrievals will be negligible.
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• Boundary layer aerosol profiling method for hyperspectral remote
sensing measurements of oxygen absorption to retrieve total AOD
and effective ALH

• Demonstration using CLARS-FTS measurements to profile
aerosols in the LA Basin

• Straightforward way to extract information on aerosol loading and
its vertical structure from observed radiance

• Spectral region with greatest sensitivity to geophysical
parameter(s) to be retrieved can be easily identified

Conclusions
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Backup Slides
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Figure 4. The uncertainty of total AOD and effective ALH retrievals from CLARS measurements caused by the errors in the input aerosol optical properties of SSA and phase 
function. Synthetic radiance observation is first generated with a RT model with the same CLARS and solar geometries as in Figure 2, with aerosol in the middle layer 
(ALH=706 meters), and the averaged total AOD (0.0541), SSA (0.8592), and asymmetric factor (0.8120) derived from long term AERONET measurements at Caltech. The 
corresponding standard deviations (σ) for SSA (0.1459) and asymmetric factor (0.0877) are used as the errors. The total AOD in (a) and ALH in (b) are then retrieved by 
applying the proposed method to the synthetic spectra data using RT model with perturbed SSA or asymmetric factor by a certain error (-1.0σ, -0.75σ, -0.5σ, -0.25σ, 0.25σ, 
0.5σ, 0.75σ, 1.0σ). The estimation error of total AOD and asymmetric factor are calculated as the deviation (in percentage) from the known truth.

Retrieval Uncertainties


